Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis

نویسندگان

  • Jing Yang
  • Sendurai A Mani
  • Joana Liu Donaher
  • Sridhar Ramaswamy
  • Raphael A Itzykson
  • Christophe Come
  • Pierre Savagner
  • Inna Gitelman
  • Andrea Richardson
  • Robert A Weinberg
چکیده

Metastasis is a multistep process during which cancer cells disseminate from the site of primary tumors and establish secondary tumors in distant organs. In a search for key regulators of metastasis in a murine breast tumor model, we have found that the transcription factor Twist, a master regulator of embryonic morphogenesis, plays an essential role in metastasis. Suppression of Twist expression in highly metastatic mammary carcinoma cells specifically inhibits their ability to metastasize from the mammary gland to the lung. Ectopic expression of Twist results in loss of E-cadherin-mediated cell-cell adhesion, activation of mesenchymal markers, and induction of cell motility, suggesting that Twist contributes to metastasis by promoting an epithelial-mesenchymal transition (EMT). In human breast cancers, high level of Twist expression is correlated with invasive lobular carcinoma, a highly infiltrating tumor type associated with loss of E-cadherin expression. These results establish a mechanistic link between Twist, EMT, and tumor metastasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor Metastasis: A New Twist on Epithelial–Mesenchymal Transitions

Epithelial-mesenchymal transitions are essential for normal embryonic development and for progression of non-invasive tumor cells into malignant, metastatic carcinomas. Twist, an important regulator of morphogenesis in the embryo, has recently been implicated in the onset of invasive behavior during tumor progression.

متن کامل

Twist is required for thrombin-induced tumor angiogenesis and growth.

Twist, a master regulator of embryonic morphogenesis, induces functions that are also required for tumor invasion and metastasis. Because thrombin contributes to the malignant phenotype by up-regulating tumor metastasis, we examined its effect on Twist in five different tumor cell lines and two different endothelial cell lines. Thrombin up-regulated Twist mRNA and protein in all seven cell line...

متن کامل

TrkC plays an essential role in breast tumor growth and metastasis.

Tropomyosin-related kinase (Trk) C, a member of the Trk family of neurotrophin receptors, has been implicated in the growth and survival of human cancer tissues. Here, we report that TrkC is frequently overexpressed in human breast cancers and plays an essential role in tumor growth and metastasis. Ectopic expression of TrkC in non-malignant mammary epithelial cells suppressed anoikis, which co...

متن کامل

TWIST and ovarian cancer stem cells: implications for chemoresistance and metastasis

The transcription factor TWIST1 is a highly evolutionally conserved basic Helix-Loop-Helix (bHLH) transcription factor that functions as a master regulator of gastrulation and mesodermal development. Although TWIST1 was initially associated with embryo development, an increasing number of studies have shown TWIST1 role in the regulation of tissue homeostasis, primarily as a regulator of inflamm...

متن کامل

Exploring a new twist on tumor metastasis.

Unraveling the genetic programs that drive -metastasis may offer insights into how to limit or prevent this deadly aspect of cancer progression. Our recent studies indicate that tumor cell metastasis involves the activity of the transcription factor, Twist, which regulates epithelial-mesenchymal transition and early embryonic morphogenesis. Here, we review the Twist signaling pathway during nor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2004